CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the October/November 2015 series

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2015	5070	21

A1 (a) argon (1) [1]

(b) chlorine/sulfur dioxide (1) [1]

(d) ammonia (1) [1]

(c) ethene (1) [1]

(e) nitrogen(II) oxide (1) [1]

(f) oxygen (1) [1]

[Total: 6]

A2 (a) three pairs of bonding electrons between H and N (1) [2] two non-bonding electrons on N (1)

(b) propyl ethanoate (1) [2]

(c) [2]

	С	н	0
mole ratio	76.60 12 6.38	6.38 1 6.38	17.02 16 1.064
simplified ratio	6.38 1.064 6	6.38 1.064 6	1.064 1.064 1

mole ratio line (1)

simplified ratio or empirical formula (1)

Page	3	Mark Scheme	Syllabus	Paper
		Cambridge O Level – October/November 2015	5070	21
(d)	(i)	sulfur dioxide/ SO_2 (1) (sulfur dioxide) dissolves and is oxidised/reacts with (rain)water and (1)	d oxygen	[2]
	(ii)	any suitable example e.g. reacts with mortar/reacts with limestone buildings (made of carbonate rocks)/corrodes metalwork etc. (1)	/erodes	[1]
	(iii)	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$		[2]
		correct reactants and formulae (1)		
		correctly balanced equation (1)		
				[Total: 11]
A3 (a)	(i)	chlorofluorocarbons/CFCs (1)		[1]
	(ii)	ozone absorbs uv (radiation) (1)		[2]
		too much uv increases incidence of skin cancer/cataracts etc. (1)		
(b)	(i)	reaction catalysed by light/light involved in breakdown of chemicals	; (1)	[1]
	(ii)	$2O_3 \rightarrow 3O_2(1)$		[1]
(c)	2 F	$e^{2+} + 2H^{+} + O_{3} \rightarrow 2Fe^{3+} + H_{2}O + O_{2} (1)$		[1]
				[Total: 6]
A4 (a)	рс	sitive ions in regular layers with a minimum of two layers of ions (1)		[2]
	ele	ectrons shown interspersed between the particles shown (1)		
	ро	sitive ion $\stackrel{+}{\underbrace{e^{-} e^{-} e^{-}}} \stackrel{+}{\underbrace{e^{-} e^{-}}} \stackrel{+}{\underbrace{e^{-}}}$		
	е	lectron — e — e — e — e — e — e — e — e — e —		
		arks can be awarded from correct description in writing or from labelled agram.	d	
(b)	ide	ea of layers of metal atoms/or ions (1)		[2]
	ca	n slide over each other (when force applied) (1)		

Page 4	4	Mark Scheme	Syllabus	Paper
		Cambridge O Level – October/November 2015	5070	21
(c)	(i)	correct M_r of 128 or (2 × 64) as numerator of fraction OR		[2]
		correct M_r (2 × 64) + 12 + (16 × 5) + (2 × 1) or 222 as denominator	(1)	
		percentage = 57.65/57.7 (1)		
	(ii)	add acid (1) gas evolved turns limewater milky (1)		[2]
(d)	A is	s oxidation because electrons are lost (1)		[2]
	B is	reduction because electrons are gained (1)		
				[Total: 10]
5 (a)	(i)	ANY FOUR FROM:		[4]
		ammonia molecules/HBr molecules have enough energy to escape HBr(aq) or $NH_3(aq)$ (1)	e from the	
		diffusion (1)		
		molecules move randomly/molecules spread out/molecules get mit (1)	ixed up	
		move from high to low concentration/move with the concentration (1)	gradient	
		solid formed where NH ₃ and HBr react (1)		
		HBr has higher $M_{\rm r}$ than NH ₃ /molecules of HBr are heavier than mo NH ₃ (1)	lecules of	
		NH ₃ molecules move faster than HBr molecules/NH ₃ diffuses faste	r (1)	
(b)	higl	ner pressure pushes molecules closer together		[1]
				[Total: 5]
(a)	mo	of NaOH = 0.30 (1)		[2]
	ene	ergy released (= 0.30×57.1) = $17/17.1(3)(kJ)(1)$		
(b)		of HC l = 2.19/36.5 OR = 0.06 (1)		[2]
	volu	ume = $(0.06/0.2) = 0.3 \text{dm}^3/300 \text{cm}^3$ (1)		
(0)	ado	nitric acid and silver nitrate (1)		[2]
(C)		te precipitate/white solid formed (1)		

Pa	age :	5	Mark Scheme	Syllabus	Paper
			Cambridge O Level – October/November 2015	5070	21
	(d)	am	photeric (1)		[1]
					[Total: 7]
В7	(a)	wea	ak forces between layers/(weak) van der Waals' forces between lay	vers (1)	[2]
		laye	ers slide over each other (easily) (1)		
	(b)	5 p	rotons and 6 neutrons (1)		[1]
	(c)	gia	nt structure / lattice (1)		[2]
			bonds are strong/lot of energy needed to break the bonds/needs perature to break the bonds (1)	high	
	(d)	(i)	has delocalised electrons/free electrons/electrons can move (1)		[1]
		(ii)	inert/does not react (with the electrolyte) (1)		[1]
	(e)	(i)	$4OH^{-} \rightarrow O_{2} + 2H_{2}O + 4e^{-}(1)$		[1]
		(ii)	$2H^{+} + 2e^{-} \rightarrow H_{2}(1)$		[1]
		(iii)	the mole ratio of H to O in water is 2:1/for every 2 moles of hydrog produced only 1 mole of oxygen is liberated (1)	jen	[1]
					[Total: 10]
В8	(a)	(i)	mol Mg (= $0.030/24$) = 1.25×10^{-3} (1) mol HC l (= $0.10 \times 20/1000$) = 2×10^{-3} (1)		[3]
			mol HC l required to react with 1.25 \times 10 ⁻³ mol Mg is 2.5 \times 10 ⁻³ so Mg in excess (1)		
		(ii)	bubbles/effervescence/fizzing/tube gets hot/magnesium reduces size (1)	s on	[1]
	(b)		of gas(= $24/24000$) = 1.0×10^{-3} (1) ss of hydrogen (= $2 \times 1.0 \times 10^{-3}$) = 2.0×10^{-3} (g)		[2]
	(c)	gre	ater surface area (1)		[2]
		mo	re frequent collisions (of H ⁺ ions with Mg) (1)		
	(d)	(i)	$3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$ (1)		[1]

			Cambridge O Level – October/November 2015	5070	21
		(ii)	3- / -3 (1)		[1]
					[Total: 10]
B9 ((a)		angement: regularly arranged/in a set pattern/ordered/not random/ sition (1)	fixed	[2]
		mo	tion: vibrating/do not move (from place to place) (1)		
((b)	(i)	condensation (polymer) (1)		[1]
		(ii)	correct structure with minimum of two units (2)		[2]
			e.g. $ \begin{array}{c c} O & O \\ \parallel & \parallel \\ -O-\square-C-O-\square-C - (\text{as minimum required}) \end{array} $		
((c)	(i)	moles methanal (= $1800/30$) = $60 \text{ mol } (1)$ mass of glycolic acid (= 60×76) = $4560 \text{ (g) } (1)$ for 45% yield (= $4560 \times 45/100$) = $2052 \text{ (g) } (1)$		[3]
		(ii)	strong acid is fully ionised/fully dissociated in solution (1)		[2]
			weak acid is partially ionised/incompletely dissociated in solution (1	1)	
					[Total: 10]
B10((a)	pos	sition of equilibrium moves to right/more products formed (1)		[2]
			es in direction of decreasing number of moles/goes in direction of smume/fewer moles of products than reactants (1)	naller	
((b)	pos	sition of equilibrium goes to the right/more products formed (1)		[2]
			ction is exothermic/backward reaction is endothermic/reaction goes othermic direction (1)	to the	
((c)	par	ticles move slower/particles have less energy (1)		[2]
			rer particles have activation energy/fewer successful collisions/fewe isions (1)	r fruitful	
((d)	(i)	speeds up reaction (1)		[2]
			by lowering the activation energy/providing an alternative reaction p	oathway (1)

Mark Scheme

Syllabus

Paper

Page 6

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2015	5070	21

(ii) ANY TWO FROM:

[2]

form coloured compounds (1)

have variable oxidation states/form ions with different charges (1)

form complex ions (1)

[Total: 10]